4.1.碎片覆盖
所谓碎片覆盖就是发送碎片覆盖先前碎片中的数据。例如:
碎片1 GET x.idd
碎片2 a.?(缓冲区溢出数据)
第二个碎片的第一个字符覆盖第一个碎片最后一个字符,这两个碎片被重组之后就变成了GET x.ida?(缓冲区溢出数据)。实际情况远非这么简单。
4.2.碎片数据覆盖
这种方法和上面的碎片覆盖有些类似,只不过是覆盖全部的碎片数据,例如:
碎片1 GET x.id
碎片2 一些随机的字符
碎片3 a.?(缓冲区溢出数据)
这些碎片在经过目标系统的重组之后,碎片3将完全覆盖碎片2,重组之后的数据变成GET x.ida?(缓冲区溢出数据)。如果入侵检测系统的重组方式和目标系统不同,就无法重组出“GET x.ida?(缓冲区溢出数据)”,因此就检测不出这个攻击。
4.3.碎片超时
这种攻击依赖于入侵检测系统在丢弃碎片之前会保存多少时间。大多数系统会在60秒之后将丢弃不完整的碎片流(从收到第一个碎片开 始计时)。如果入侵检测系统保存碎片的时间小于60秒,就会漏掉某些攻击。例如:
碎片1(设置了MF位) GET foo.id
碎片2(59秒之后发出) a?(缓冲区溢出数据)
如果IDS保存起始碎片的时间不到60秒,就会漏过攻击。幸运的是,如果配置没有错误,现在的网络入侵检测系统能够检测此类攻击。
这种技术结合其它的网络技术(例如:TTL值)将更有威胁。如果入侵检测系统和被监视的系统不在同一个网段,攻击者就可以在TTL上做手脚。有的单位由于经费的限制,不能在自己的每个子网都部署IDS节点,只在网络的出入口部署一套 IDS,监视所有的网络流量。这种情况下,如果被攻击的主机在其它的子网,攻击数据包到目标系统的跳数就大于到IDS的跳数。攻击者可以伪造碎片的 TTL,使某些碎片刚好能够到达,而无法到达目标系统,例如:碎片序号 负载 TTL(假设攻击者到目标的跳数是5,到IDS的跳数是3)
1 GET foo.id 5
2 evasion.html 3
3 a?(缓冲区溢出数据) 5
从这些碎片中,IDS重组的数据是“GET foo.idevasion.html a?(缓冲区溢出数据)”或者“GET foo.idevasion.html”(如果IDS的超时时间小于60秒)。通过这种方式,攻击者成功地在IDS中插入了垃圾数据。
5.碎片和snort特征码
下面我们把上述攻击和某些snort特征码进行比较。对于.ida缓冲区溢出攻击,默认的snort特征码几乎无法捕获任何通过碎片发动的攻击(如果使用了frag2预处理模块,snort可以截获碎片超时攻击)。
共5页: 上一页 [1] [2] [3] 4 [5] 下一页
|